Lecture 4 — 02/10/2024

Strain effect on the band structure
- Introduction: strain, lattice-mismatch
- Elasticity theory

Semiconductor physics and light-matter interaction



Summary Lecture 3
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Summary Lecture 3

Valence band structure
- s-type (/ = 0)
- p-type (/ = 1), triply degenerate m;=-1,0,1

4 E(p)
Luttinger Hamiltonian because of symmetry: c \/
H=Ap* I+B(pL)’| dim(L)=3x3 5
E

g

E,.(p)=(A+B)p*forL,=+1 and E,(p)=Ap’>forL,=0
Impact of spin-orbit coupling on the VB i 1A
H=ApI+B(pJ)’| dimUJ)=4x4 Ih /\
SO p

Band structure of a zinc-blende
SC near the I'-point

Ew (P) =[A+9—B)P2 = 2p2 (4, =+3/2)

mhh

En(p)= (A+E)p2 = zﬁj (4, =+1/2)
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Lattice-mismatch in llI-V semiconductors
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Lattice parameter (A)

The lattice parameters of semiconductors are
almost never the same

= Strain induced in the semiconductor layers



Epitaxial growth
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Epitaxy: crystal growth proceeds layer-by-layer and the layer structure complies with the
substrate lattice
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2D nanostructures: quantum wells
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Epitaxial growth: case of heteroepitaxy

Epitaxial growth — Basic principle and problems
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Heteroepitaxy: case of InGaAs/GaAs multiple quantum wells

No dislocation Dislocations

TEM

Elastic deformation Plastic deformation

(Coherent growth)
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Extended defects: threading dislocations

Burgers vector = It represents the magnitude and direction of the lattice distortion caused by
a dislocation in a crystal lattice

« Edge type dislocation:
i F”[ ] The Burgers vector and the dislocation
Ll Ly line are at right angles to one another

dislocation

line l l [

dislocation
line S

« Screw type dislocation:
The Burgers vector and the dislocation
line are parallel

Gliding

plane \

Dislocation usually associated with spiral
growth
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Imaging dislocations using microscopy techniques

(c)

Parallel edge threading
dislocations in Ge crystals

[ -

APL 107, 093501 (2015)

B

N-face GaN (000-1)

APEX 6, 035503 (2013)
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« Edge type dislocation:
The Burgers vector and the dislocation
line are at right angles to one another

« Screw type dislocation:
The Burgers vector and the dislocation
line are parallel

Dislocation usually associated with spiral
growth
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Critical thickness for plastic relaxation of a 2D layer

Minimizing the total energy density with respect to the dislocation line density yields the critical
thickness h,

2
h, can be a macroscopic h = Kb
quantity (> 1 pm)! c
47Bf.b

-In (hc a/b) Transcendental equation!
,edge

b (b,): Burgers vector (edge component)

o numerical factor accounting for the energy of the dislocation core

B=2u (1 + V)/(l — V) Bulk modulus (infinitesimal pressure increase to relative volume decrease)
K = u/(1-v) is the dislocation energy coefficient

f: misfit between substrate and growing layer

. shear modulus (pressure unit)
v. Poisson’s ratio (dimensionless parameter, usually > 0, negative ratio of transverse to axial strain)

F. C. Frank and J. H. van der Merwe, Proc. R. Soc. London, Ser. A 198, 205 (1949); > 1600 citations
J. H. van der Merwe, Crit. Rev. Solid State Mater. Sci. 17, 187 (1991).
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Strain and heteroepitaxy

Lattice-mismatch: Aa/a = (a-a,)/a a. in-plane lattice parameter of the substrate

Strain: ¢, = (as-a,)/a, a;: relaxed value of the in-plane lattice
parameter of the deposited layer

o [
Example: AIN/GaN combination %z
acn = 3.189 A and a,n=3.112 A LA
GaN on AIN: Aala = 2.47% and ¢, = -2.42% I
<0 compressive strain N 5f5'”“6f0 -
g,>0 tensile strain Hattos parameter ()
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Biaxial strain (compression)

Growth on a substrate with lattice parameter a,

& = (as'al)/al

Deformation at the level of
a single monolayer!

/

v
a,=a, = a4, a, = ds a =(1+¢)aq

h, linked to the lattice deformation along the growth axis a,

= necessity to determine g, to deduce the growth time or the number of monolayers before
plastic relaxation occurs = h_ should be an “integer” multiple of a,

Semiconductor physics and light-matter interaction
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Elasticity theory

Elastic deformation: dimensionless = pressure

Hooke’s law: relation between the tensors of deformations & stress o, and elastic constants

Cijkl: Oy = Cijk/ 8,-1- (use of Einstein summation notation (i.e., summation takes place when an index variable appears twice in a
single term))

For cubic crystals defined by the crystallographic axes [100], [010] and [001]:

e N Ve ~N e N

> 01 Ch Cp (G O 0 0 €
% ) Cp, ¢ (G O 0 0 &
3 03 Chb Cp ¢, O 0 0 &
o, |0 0 0 Cy O 0 | X g
O 0 0 0 0 Cy O &s
Oy 0 0 0 0 0 Cul | &
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Elasticity theory

A few words on Voigt notations:
Indices: oy = o, = 0y, €quivalently 2 = yand 3=z
Oy = Oy 05= 0y aNd 05 = 0y,

The same statement for indices holds for the components of the tensor of deformations &;_ 4, 5

Overview

Semiconductor physics and light-matter interaction 15



Elasticity theory

During growth, the surface is stress-free and can freely move
along the growth axis (usually coinciding with z). Thus, it leads to:

o13=0
Extra note: The boundary conditions are such that such an epilayer (i.e., a 2D layer
O3 = 0) heteroepitaxially grown on a substrate) undergoes zero stress in the z direction, zero
shear stresses, and it has in-plane symmetry of x and y directions.

033=0

In the layer plane, S are identical:

Relaxed value of the in-plane
Let us write (cf. slide 13) &,= g;;and g, = (a-aP)/a0<  lattice parameter

Semiconductor physics and light-matter interaction
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Elasticity theory: case of epitaxial growth system

[hki] = [001]: Orientation at play for the CMOS technology (but not only)!

&3=10

011 = 0= & (CF2CH)(C-C,)/Cy

g =-2C,/C ¢
AN

Relationship deduced from Hooke’s law: a
tensile in-plane strain leads to a compressive

\ out-of-plane deformation and vice versa!

[hk]] = [111]: Cf. sketch on top of slide 7!

&3=0

011 = Oy = & 6C (€ F2CH)I(C+2C 1, T4C,)
& =-2(C 20 2C)NC 20, T4C,) &)
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Strain effect on the band structure

The crystal symmetry is changed and thereby the band structure

The strain Hamiltonian can be written as the sum of two components: a purely hydrostatic term H
and a shear strain term Hg.

H=H, + Hg
CB _—
VB ~ ~ hh
AN
Hydrostati Ih
Relaxed ydrostatic Shear

(compression)

Case of a cubic semiconductor

Semiconductor physics and light-matter interaction
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Strain effect on the band structure

The band structure is affected in different ways by deformations:

1. A volume dilatation (described by LA-phonons at the microscopic scale) does not change the crystal

symmetry but the e-LA phonon interaction is responsible for a change in bandgap (e.g., an increase for
hydrostatic pressure)

2. TA-phonons contain shear waves (shear component LA-phonons less important) = shear strain:
(i) does not affect (to 15t order) the energy of a nondegenerate band in a cubic crystal,

(i) does lift some of the degeneracy of energy bands at high-symmetry points of the 15t Brillouin zone (Matrix-
element theorem + crystal symmetry)

CB _—

Cf. Chap. 3
Yu-Cardona

VB ~ o hh
N\ lh

Shear

Hydrostatic
(compression)

Relaxed
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Strain effect on the band structure

2, =2(1-C,,/Cyy)g, Hydrostatic deformation
Cubic semiconductor

25 =-2(1+2C,,/C4y)g, Shear deformation

”Hydrostatic” term

1. Conduction band

__—-—"'_ '-————_~
- Y~

Dirr:e—n—si:)r_la—lit—y: energy
2. Valence band

The hydrostatic component modifies the VB edge E, by 6E, = a,2,, where a, is
the VB potential of deformation

Semiconductor physics and light-matter interaction
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Strain effect on the band structure
“Shear” term

The shear strain deeply affects the ordering of the valence band levels (hh, |h, and spin-orbit)

Given b, the potential of deformation due to shear strain and Agy the spin-orbit splitting, the
energy shifts of hh and Ih write

SE, =—-b,%,

Ay —b,2, \/ A, +b, 2 +8 by )2 Case of zinc-blende SCs
O, =

In summary, we have (at the F—pomt).

E,=E,+E, +aZ,
E.,=E,+aX,—b 2,

Ay — b3, \/A +b2)2+8(b2)2
E,=E,+taX, —

Numerical example using the band
structure parameters of GaAs _

0.341 1221 =717

Semiconductor physics and light-matter interaction
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Strain effect on the band structure
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Strain Effect in Semiconductors: Theory and Device Applications
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Yongke Sun, Scott Thompson,Toshikazu Nishida
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Si/SiGe MOSFET

—8= eSion §j,G§ .
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®

Si substrate
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Figure 1. The mobility enhancement of holes vs. vertical field under the gate in
PMOSFETs in strained Si for different Ge concentrations in the relaxed
Si;.Ge, buffer.

Origin of this MOSFET transistor performance
enhancement?
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Strain effect on the band structure

* Hydrostatic strain
» Equivalent strain along x, y, and z
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- Biaxial strain
» Strain along 2 directions: strained semiconductor epilayers

Semiconductor physics and light-matter interaction 24



