Lecture 4 - 02/10/2024

Strain effect on the band structure

- Introduction: strain, lattice-mismatch
- Elasticity theory

Summary Lecture 3

k.p method

$$u_{n,\mathbf{k}}(\mathbf{r})e^{i\mathbf{k}\mathbf{r}}$$

$$\left[\frac{\mathbf{p}^2}{2m_0} + \frac{\hbar \mathbf{k} \cdot \mathbf{p}}{m_0} + \frac{\hbar^2 \mathbf{k}^2}{2m_0} + V(\mathbf{r})\right] u_{n,\mathbf{k}}(\mathbf{r}) = E_{n,\mathbf{k}} u_{n,\mathbf{k}}(\mathbf{r})$$

$$E_{n,\mathbf{k}} = E_{n,0} + \frac{\hbar^2 k^2}{2 m_0} + \frac{\hbar^2}{m_0^2} \sum_{n' \neq n} \frac{\left| \left\langle u_{n',0} \, \middle| \, \mathbf{k} \cdot \mathbf{p} \, \middle| \, u_{n,0} \right\rangle \right|^2}{E_{n,0} - E_{n',0}}$$

$$E_{c,k} = E_{c,0} + \frac{\hbar^2 k^2}{2m_0} \left(1 + \frac{P^2}{E_g} \right) = E_{c,0} + \frac{\hbar^2 k^2}{2m^*}$$

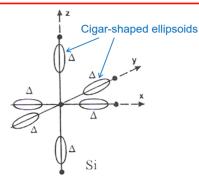
Effective mass

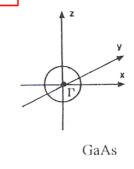
$$m^* = m_0 \left(1 + \frac{P^2}{E_g} \right)^{-1}$$

Effective mass

$$m^* = \hbar^2 / \frac{d^2 E}{d \mathbf{k}^2}$$

$$E_c(\mathbf{k}) = E_c(0) + \hbar^2 \left(\frac{k_1^2}{2m_1} + \frac{k_2^2}{2m_2} + \frac{k_3^2}{2m_3} \right)$$





Direct bandgap SC:

Isotropic case

$$E_c(\mathbf{k}) = E_c + \frac{1}{2} \frac{d^2 E}{dk^2} k^2 = E_c + \frac{\hbar^2 k^2}{2m^*}$$

Indirect bandgap SC:
$$\left(k_{\parallel} = k_{z}, k_{\perp} = \sqrt{k_{x}^{2} + k_{y}^{2}}\right)$$

$$E_{c}\left(\mathbf{k}\right) = E_{c} + \frac{1}{2} \frac{d^{2}E}{dk_{\parallel}^{2}} \left(k_{\parallel} - k_{0}\right)^{2} + \frac{1}{2} \frac{d^{2}E}{dk_{\perp}^{2}} k_{\perp}^{2} = E_{c} + \frac{\hbar^{2}}{2m_{l}^{*}} \left(k_{\parallel} - k_{0}\right)^{2} + \frac{\hbar^{2}}{2m_{t}^{*}} k_{\perp}^{2}$$

 m_l and m_t are the longitudinal and transverse effective masses, respectively

Summary Lecture 3

Valence band structure

- s-type (l = 0)
- p-type (l = 1), triply degenerate $m_l = -1,0,1$

Luttinger Hamiltonian because of symmetry:

$$H = Ap^2 I + B(\mathbf{pL})^2$$
 dim(L) = 3 × 3

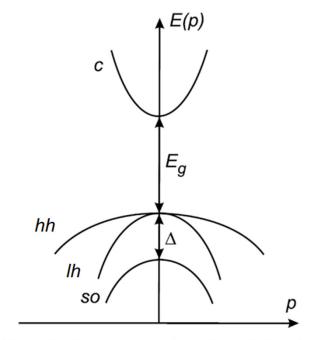
$$E_{hh}(p) = (A+B)p^2$$
 for $L_z = \pm 1$ and $E_{lh}(p) = Ap^2$ for $L_z = 0$

Impact of spin-orbit coupling on the VB

$$H = Ap^2 I + B(\mathbf{pJ})^2$$
 dim(**J**) = 4 × 4

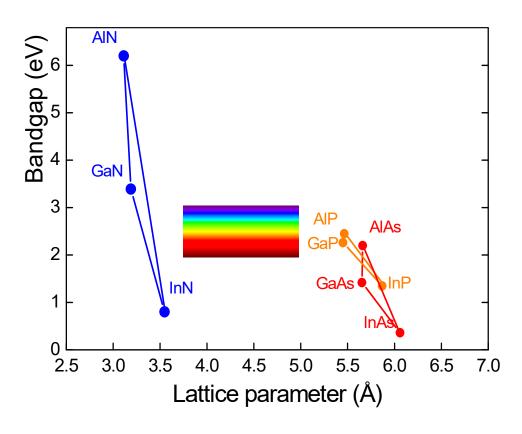
$$E_{hh}(p) = \left(A + \frac{9B}{4}\right)p^2 = \frac{p^2}{2m_{hh}}\left(J_z = \pm 3/2\right)$$

$$E_{lh}(p) = \left(A + \frac{B}{4}\right)p^2 = \frac{p^2}{2m_{lh}}\left(J_z = \pm 1/2\right)$$



Band structure of a zinc-blende SC near the Γ -point

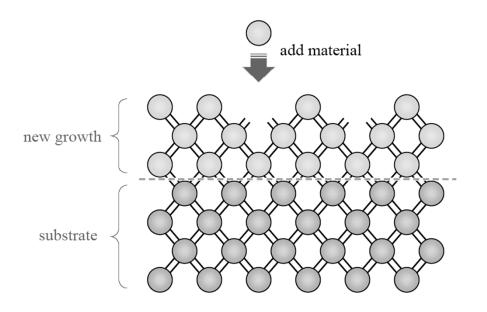
Lattice-mismatch in III-V semiconductors

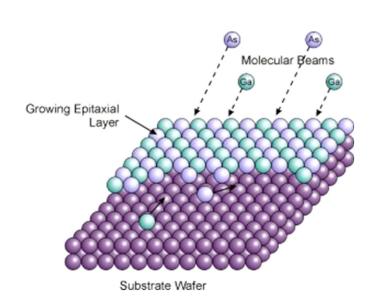


The lattice parameters of semiconductors are almost never the same

⇒ Strain induced in the semiconductor layers

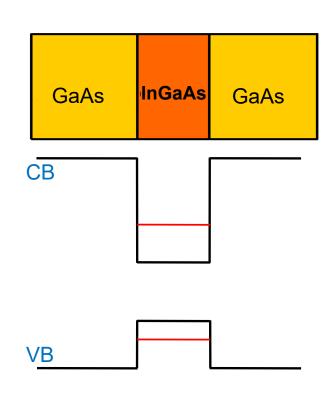
Epitaxial growth

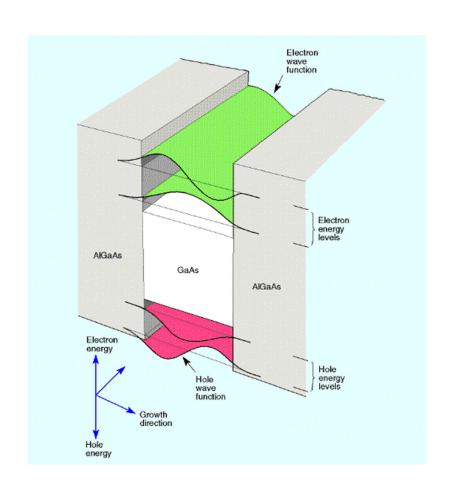




Epitaxy: crystal growth proceeds layer-by-layer and the layer structure complies with the substrate lattice

2D nanostructures: quantum wells

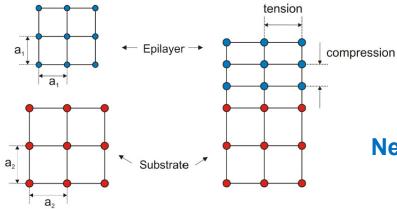




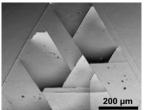
Epitaxial growth: case of heteroepitaxy

Epitaxial growth – Basic principle and problems

unstrained

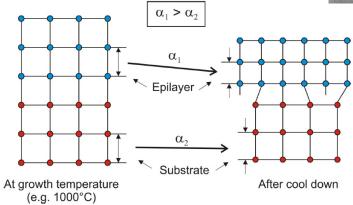


Network of cracks



Thermal expansion coefficient (TEC), α

different TECs lead to strain in the lattice

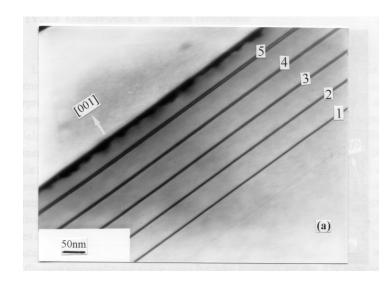


strained

Heteroepitaxy: case of InGaAs/GaAs multiple quantum wells

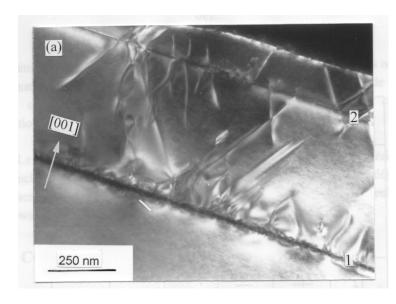
TEM

No dislocation



Elastic deformation (Coherent growth)

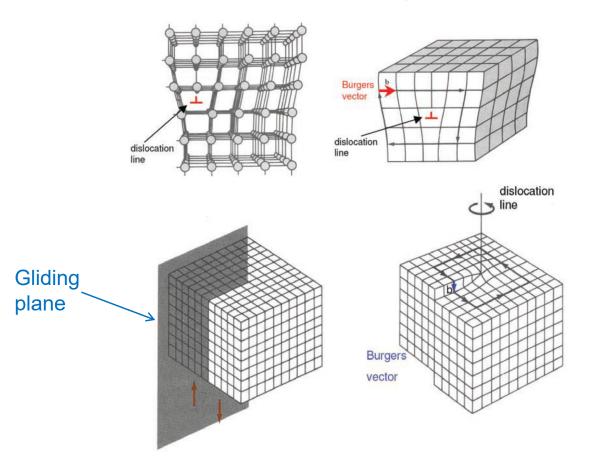
Dislocations



Plastic deformation

Extended defects: threading dislocations

Burgers vector ⇒ It represents the magnitude and direction of the lattice distortion caused by a dislocation in a crystal lattice



Edge type dislocation:

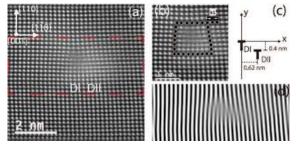
The Burgers vector and the dislocation line are at right angles to one another

Screw type dislocation:

The Burgers vector and the dislocation line are parallel

Dislocation usually associated with spiral growth

Imaging dislocations using microscopy techniques

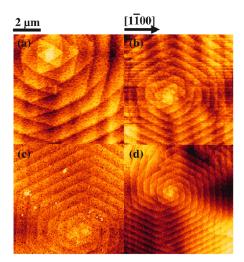


APL 107, 093501 (2015)

Parallel edge threading dislocations in Ge crystals grown on Si (001) substrate

Edge type dislocation:

The Burgers vector and the dislocation line are at right angles to one another



N-face GaN (000-1)

APEX 6, 035503 (2013)

Screw type dislocation:

The Burgers vector and the dislocation line are parallel

Dislocation usually associated with spiral growth

Critical thickness for plastic relaxation of a 2D layer

Minimizing the total energy density with respect to the dislocation line density yields the critical thickness h_c

 $h_{\rm c}$ can be a macroscopic quantity (> 1 μ m)!

$$h_{\rm c} = \frac{Kb^2}{4\pi Bf_i b_{\rm ,edge}} \cdot \ln(h_{\rm c} \alpha/b)$$

Transcendental equation!

 $b(b_{\parallel})$: Burgers vector (edge component)

 α : numerical factor accounting for the energy of the dislocation core

 $B = 2\mu(1+\nu)/(1-\nu)$ Bulk modulus (infinitesimal pressure increase to relative volume decrease)

 $K = \mu/(1-\nu)$ is the dislocation energy coefficient

 f_i : misfit between substrate and growing layer

 μ : shear modulus (pressure unit)

 ν . Poisson's ratio (dimensionless parameter, usually > 0, negative ratio of transverse to axial strain)

F. C. Frank and J. H. van der Merwe, Proc. R. Soc. London, Ser. A **198**, 205 (1949); > 1600 citations J. H. van der Merwe, Crit. Rev. Solid State Mater. Sci. **17**, 187 (1991).

Strain and heteroepitaxy

Lattice-mismatch: $\Delta a/a = (a_l - a_s)/a_s$

a_s: in-plane lattice parameter of the *substrate*

Strain: $\varepsilon_{//} = (a_s - a_l)/a_l$

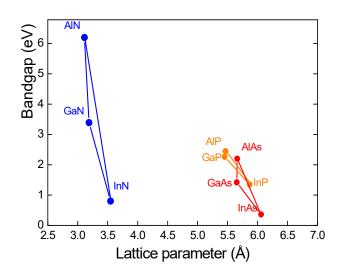
*a*_i: relaxed value of the in-plane lattice parameter of the *deposited layer*

Example: AIN/GaN combination

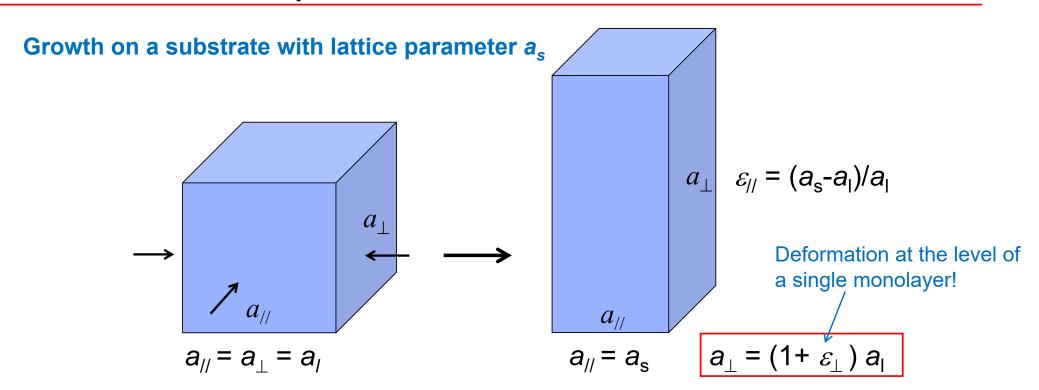
$$a_{GaN} = 3.189 \text{ Å}$$
 and $a_{AIN} = 3.112 \text{ Å}$

GaN on AIN: $\Delta a/a = 2.47\%$ and $\varepsilon_{//} = -2.42\%$

 $\varepsilon_{/\!/} < 0$ compressive strain $\varepsilon_{/\!/} > 0$ tensile strain



Biaxial strain (compression)



$h_{\rm c}$ linked to the lattice deformation along the growth axis a_{\perp}

 \Rightarrow necessity to determine ε_{\perp} to deduce the growth time or the number of monolayers before plastic relaxation occurs $\Rightarrow h_c$ should be an "integer" multiple of a_{\perp}

Elasticity theory

Elastic deformation:

dimensionless ≡ pressure

Hooke's law: relation between the tensors of deformations \mathcal{E}_{ij} , stress σ_{ij} , and elastic constants C_{ijkl} : $\sigma_{kl} = C_{ijkl} \mathcal{E}_{ij}$ (use of Einstein summation notation (i.e., summation takes place when an index variable appears twice in a single term))

For cubic crystals defined by the crystallographic axes [100], [010] and [001]:

Elasticity theory

A few words on Voigt notations:

Indices:
$$\sigma_1 = \sigma_{xx} = \sigma_{11}$$
, equivalently $2 = y$ and $3 = z$ $\sigma_4 = \sigma_{yz}$, $\sigma_5 = \sigma_{zx}$ and $\sigma_6 = \sigma_{xy}$

The same statement for indices holds for the components of the tensor of deformations $\varepsilon_{i=1 \text{ to } 6}$

Elasticity theory

During growth, the surface is stress-free and can freely move along the growth axis (usually coinciding with z). Thus, it leads to:

$$\sigma_{13} = 0$$

$$\sigma_{23} = 0$$

$$\sigma_{33} = 0$$

Extra note: The boundary conditions are such that such an epilayer (i.e., a 2D layer heteroepitaxially grown on a substrate) undergoes zero stress in the *z* direction, <u>zero shear stresses</u>, and it has <u>in-plane symmetry of *x* and *y* directions.</u>

In the layer plane, the deformations are identical:

$$\varepsilon_{11} = \varepsilon_{22} \neq \varepsilon_{//} \leq \varepsilon_{12} = 0$$

Let us write (cf. slide 13) $\varepsilon_{\perp} = \varepsilon_{33}$ and $\varepsilon_{//} = (a_{|} - a_{|}^{0})/a_{|}^{0}$

Relaxed value of the in-plane lattice parameter

Elasticity theory: case of epitaxial growth system

[hkl] = [001]: Orientation at play for the CMOS technology (but not only)!

$$\varepsilon_{13} = 0$$

$$\sigma_{11} = \sigma_{22} = \varepsilon_{//} (C_{11} + 2C_{12})(C_{11} - C_{12})/C_{11}$$

$$arepsilon_{\perp} = -2 \ C_{12}/C_{11} \ arepsilon_{//}$$

Relationship deduced from Hooke's law: a tensile in-plane strain leads to a compressive out-of-plane deformation and vice versa!

[hkI] = [111]:

Cf. sketch on top of slide 7!

$$\varepsilon_{13} = 0$$

$$\sigma_{11} = \sigma_{22} = \varepsilon_{//} 6C_{44}(C_{11} + 2C_{12})/(C_{11} + 2C_{12} + 4C_{44})$$

$$\varepsilon_{\perp} = -2 (C_{11} + 2C_{12} - 2C_{44})/(C_{11} + 2C_{12} + 4C_{44}) \varepsilon_{//2}$$

The crystal symmetry is changed and thereby the band structure

The strain Hamiltonian can be written as the sum of two components: a purely hydrostatic term H_H and a shear strain term H_S .

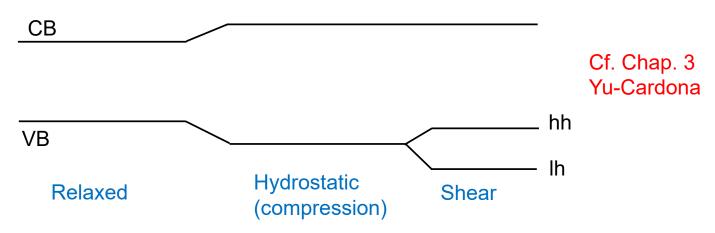
$$\frac{CB}{VB}$$
Relaxed
$$\frac{H = H_{H} + H_{S}}{VB}$$

$$\frac{hh}{hh}$$
Ih

Case of a cubic semiconductor

The band structure is affected in different ways by deformations:

- 1. A volume dilatation (described by LA-phonons at the microscopic scale) does not change the crystal symmetry but the e-LA phonon interaction is responsible for a change in bandgap (e.g., an increase for hydrostatic pressure)
- 2. TA-phonons contain shear waves (shear component LA-phonons less important) \Rightarrow shear strain:
- (i) does not affect (to 1st order) the energy of a nondegenerate band in a cubic crystal,
- (ii) does lift some of the degeneracy of energy bands at high-symmetry points of the 1st Brillouin zone (*Matrix-element theorem + crystal symmetry*)



$$\Sigma_{\rm H}$$
 = 2 (1- C_{12}/C_{11}) $\varepsilon_{//}$ Hydrostatic deformation

Cubic semiconductor

$$\Sigma_{\rm S}$$
 = -2 (1+2 C_{12}/C_{11}) $\varepsilon_{//}$ Shear deformation

"Hydrostatic" term

1. Conduction band

Due to symmetry reasons, only the hydrostatic component plays a role on the CB and $E_{\rm C}$ changes by $\delta E_{\rm C} = a_{\rm c} \Sigma_{\rm H}$ where $a_{\rm c}$ is the CB potential of deformation.

Dimensionality: energy

2. Valence band

The hydrostatic component modifies the VB edge E_v by $\delta E_V = a_v \Sigma_H$ where a_v is the VB potential of deformation

"Shear" term

The shear strain deeply affects the ordering of the valence band levels (hh, lh, and spin-orbit). Given b_v the potential of deformation due to shear strain and Δ_{SO} the spin-orbit splitting, the energy shifts of hh and lh write

$$\delta E_{\rm hh} = -b_{\rm v} \Sigma_{\rm S}$$

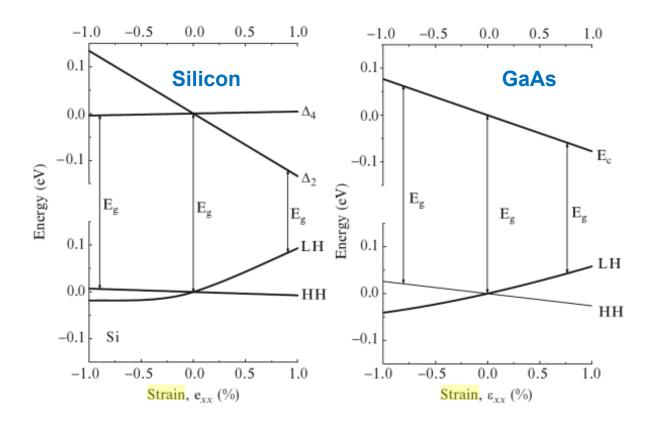
$$\delta E_{\rm lh} = -\frac{\Delta_{\rm SO} - b_{\rm v} \Sigma_{\rm S} - \sqrt{\left(\Delta_{\rm SO} + b_{\rm v} \Sigma_{\rm S}\right)^2 + 8\left(b_{\rm v} \Sigma_{\rm S}\right)^2}}{2}$$
 Case of zinc-blende SCs

In summary, we have (at the Γ -point):

$$\begin{split} E_{\mathrm{e}} &= E_{\mathrm{V}} + E_{\mathrm{g}} + a_{\mathrm{c}} \Sigma_{\mathrm{H}} \\ E_{\mathrm{hh}} &= E_{\mathrm{V}} + a_{\mathrm{v}} \Sigma_{\mathrm{H}} - b_{\mathrm{v}} \Sigma_{\mathrm{S}} \\ E_{\mathrm{lh}} &= E_{\mathrm{V}} + a_{\mathrm{v}} \Sigma_{\mathrm{H}} - \frac{\Delta_{\mathrm{SO}} - b_{\mathrm{v}} \Sigma_{\mathrm{S}} - \sqrt{\left(\Delta_{\mathrm{SO}} + b_{\mathrm{v}} \Sigma_{\mathrm{S}}\right)^2 + 8\left(b_{\mathrm{v}} \Sigma_{\mathrm{S}}\right)^2}}{2} \end{split}$$

Numerical example using the band structure parameters of GaAs

Δ_{SO} (eV)	C ₁₁ (GPa)	C ₁₂ (GPa)	a _c (eV)	<i>a</i> _v (eV)	b _v (eV)
0.341	1221	566	-7.17	1.16	-2.0



Strain Effect in Semiconductors: Theory and Device Applications
Yongke Sun, Scott Thompson, Toshikazu Nishida

Si/SiGe MOSFET



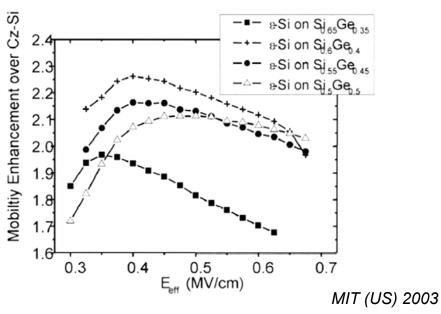
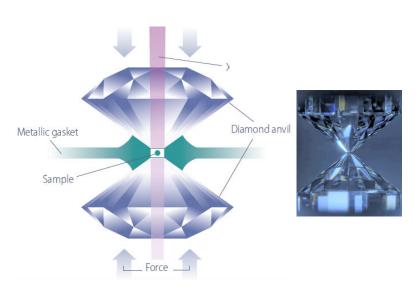
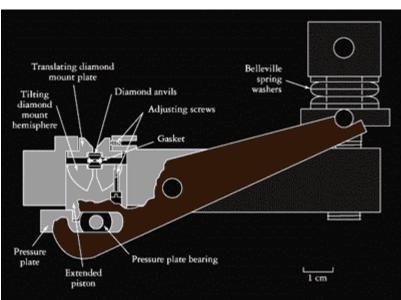


Figure 1. The mobility enhancement of holes vs. vertical field under the gate in PMOSFETs in strained Si for different Ge concentrations in the relaxed Si_{1-x}Ge_x buffer.

Origin of this MOSFET transistor performance enhancement?

- Hydrostatic strain
 - Equivalent strain along x, y, and z





- Biaxial strain
 - Strain along 2 directions: strained semiconductor epilayers